What is Biotechnology

WhatIsBiotechnology is a leading educational and public engagement platform that brings together the stories about the sciences, people and places that have enabled biotechnology to transform medicine and the world we live in today

Click here if you would prefer a plain version of this page

Raising awareness of antimicrobial resistance

Now that the world's attention is focused on combating COVID-19, it is easy to forget another significant threat to public health and the global economy - the rise of antimicrobial resistance (AMR). Yet, the problem has not disappeared. Indeed, the pandemic could be accelerating it. We are delighted to announce the launch of a new exhibition which explores the history of antimicrobial resistance and scientists’ efforts to overcome the problem. Click here to view the exhibition.

The COVID-19 pandemic

As part of our mission to educate we cover the COVID-19 pandemic focusing on the diagnostics, vaccines and treatments being developed across the world and the scientists at the front of the battle to identify and treat the virus. Deep dives in the resources include: How we lost our collective memory of epidemics. Click here to access the COVID-19 related resources.

Women in biotechnology

We are pleased to publish some reflections from women about what they see as the most important change for women in the life sciences and healthcare sector in recent years. Click here to see their comments and contribute your own reflections. This is part of an ongoing public engagement project to champion the contributions of women in the biomedical sciences. Click here to find out more about this project. Find out about some of the hidden women at the cutting edge of the science by visiting our profiles of some of the women who have helped shape biotechnology. Click here to see a timeline of initiatives implemented to promote gender equality in the biomedical sciences. Click here to see a timeline of some some key biomedical discoveries in which women played a pivotal role.

This day in biotechnology

The following events took place on this day (3rd December) in years past:

1833-12-03T00:00:00+0000

Carlos J Finlay was born in Puerto Príncipe, Cuba (1833)

Finlay was an epidemiologist who is renowned for his pioneering research on yellow fever. He was the first to theorise that the mosquito carries the organism that causes yellow fever. Finlay first proposed this idea in 1881 to the International Sanitary Conference. A year later he identified the specific mosquito species, Culex fasciatus (now known as Aedes aegypti), that carries the disease. Despite his discovery, Findlay's work went largely unheeded until 1900 when the US Army Yellow Fever Board confirmed his findings. This paved the way to measures to control the mosquito population to prevent the spread of yellow fever. Sciences: Infectious diseases.

1900-12-03T00:00:00+0000University of Heidelberg

Richard Kuhn was born in Vienna, Austria-Hungary (1900)

Kuhn was a biochemist who won 1938 Nobel Prize for Chemistry for his work on carostenoids, a group of nonnitrogenous yellow, orange and red pigments found in nature. One of these he found to be necessary for the fertilisation of certain algae. He was also awarded the Prize based on his work to determine the constitution of vitamin B2 which he isolated. He later also helped isolate vitamin B6. Initially Kuhn turned down the Nobel Prize because he was forbidden to accept it by the Nazis with whom he collaborated in the denouncement of three of his Jewish colleagues. He finally accepted the Prize after World War II. Kuhn is also credited with the discovery of Soman, a deadly nerve agent, in 1944. Sciences: Biochemistry.

The sciences

Visit our science section to explore some of the most important sciences behind biotechnology and medicine including: PCR. PCR (polymerase chain reaction) denotes a process that is used to replicate DNA. The first step in PCR, known as denaturing, involves heating a DNA sample to separate its two strands. Once separated the two strands are used as templates to synthesise two new DNA strands. This is done with the help of an enzyme called Taq polymerase. Once made, the newly synthesised molecules are used as templates to generate two more copies of DNA. The two basic steps involved in PCR, denaturing and synthesis, are repeated multiple times with the help of a thermocycler, a machine that automatically alters the temperature every few minutes. Each time the process of denaturing and synthesis occurs, the number of DNA molecules doubles. This makes it possible to generate one billion exact copies of an original target DNA within a couple of hours. Click here to learn more about PCR.

click here to browse all the sciences

Special Exhibitions

Ever wanted to tread in the footsteps of scientists to understand how they come up with new ideas in the laboratory and translate these into new products for patients? You can do this by visiting our special exhibitions section. Using photographs, laboratory notebooks and other historical sources, these exhibitions bring to life some of this process. See for yourself some of the ups and downs the scientists have faced along the way.

The history of antimicrobial resistance and scientists' struggles to overcome the problem

Rising antimicrobial resistance (AMR) is one of the most pressing public health and global economic challenges the world faces today alongside COVID-19. If left unchecked, AMR could wipe out many of the advances medicine has made in recent times. One of the most disturbing aspects of AMR today is that many common infections and minor injuries, like a simple paper cut to the finger or a scratch, could become potentially fatal. What is AMR? Where does it come from and how have scientists tried to combat the problem over time? What new tools are now on the horizon that could help improve the use of antibiotics and help preserve their efficacy for the future?

Explore our extensive collection of resources about the issue, including resources designed as teaching resources.

Click here to view the exhibition

Seattle Genetics: A case study of drug development

Drug discovery and development is a very complex process. Getting a drug to market can take years, even decades, and involves many scientific, financial and regulatory hurdles. This makes drug discovery and development a highly risky and a long and expensive business. Many drugs that appear promising in the laboratory fall by the wayside in clinical trials because they prove unsafe or ineffective. A great deal of money can thus be invested by a company in a drug candidate with little return. In this exhibition we follow the complex process of drug discovery and development through the story of Seattle Genetics, a small American biotechnology company set up in 1998 to develop cancer therapeutics. As the exhibition reveals, the success of drug development is not only reliant on scientific and clinical progress. Securing enough funding and the right partners is also essential to the process.

Click here to view the exhibition

A Healthcare Revolution in the Making: The Story of César Milstein and Monoclonal Antibodies

Today monoclonal antibodies are indispensable to medicine. They are not only used as therapeutics, comprising six out of ten of the best selling drugs in the world, but are also critical to unravelling the pathways of disease and integral components of diagnostic tests. Yet, the story of how these unsung microscopic heroes came into the world and helped change healthcare remains largely untold. The journey of monoclonal antibodies all started when an Argentinian émigré called César Milstein arrived at the Laboratory of Molecular Biology in Cambridge, the same laboratory where Watson and Crick discovered the structure of DNA. This exhibition tells the story of how Milstein came to develop monoclonal antibodies and demonstrated their clinical application for the first time.

Click here to view the exhibition

The life story of a monoclonal antibody

A third of all new medicines introduced into the world today are monoclonal antibodies, many of which go on to become blockbuster drugs. This exhibition is the story of how one specific monoclonal antibody, the oldest humanised monoclonal antibody created with therapeutic potential, moved from the laboratory bench through to the clinic and the impact it has had on patients' lives. The antibody, which originated from the CAMbridge PATHology family of antibodies, started life in 1979 not as a therapeutic, but as a laboratory tool for understanding the immune system. Within a short time, however, the antibody, YTH66.9, was being used to improve the success of bone marrow transplants and as a treatment for leukaemia, lymphoma, vasculitis, organ transplants and multiple sclerosis. Highlighting the many twists and turns that this monoclonal antibody took over time, this exhibition explores the multitude of actors and events involved in the making of a biotechnology drug.

Click here to view the exhibition

The path to DNA sequencing: The life and work of Frederick Sanger

One of the most important tools in biotechnology and medicine today is DNA sequencing, invented by Frederick Sanger, a British biochemist. This exhibition follows the journey of Sanger starting in the 1940s when he began looking for ways to decipher the composition of proteins through to his development of DNA sequencing in the 1970s. Come see the time-consuming and painstaking steps Sanger went through to perfect the DNA sequencing technique and the many different areas of medicine where DNA sequencing is now being applied all the way from the Human Genome Project through to cancer and antimicrobial resistance.

Click here to view the exhibition

The people

Exploring the lives and works of the leading people from across the world like Joseph Sinkovics (pictured) whose efforts have helped build biotechnology into a world changing science. Joseph Sinkovics (Born:1924-06-17T00:00:00+00001924) Sinkovics was one of the first scientists to recognise the possibility of immortalising a specific antibody-producing cell by fusion with a lymphoma cell, the principle that underlines the generation of monoclonal antibodies today. He has also been a major pioneer in cancer research, being one of the first to discover large granular lymphocytes could kill cancer cells without pre-immunisation of the host and that attenuated (weakened) viruses could destroy tumour cells in vitro which led to his development of some of the first viral therapies against cancer. Click here to learn more about Joseph Sinkovics.

click here to browse all the people

The places

Exploring the places and institutions, and people working in them, across the world like Laboratory of Molecular Biology (pictured) where the science of biotechnology has been developed. A pioneer in the field of molecular biology, the Laboratory of Molecular Biology was the place where the helix-structure of DNA was finally determined and where the first long-surviving monoclonal antibodies were created. Click here to learn more about Laboratory of Molecular Biology.

click here to browse all the places

Timeline

An ever-growing list of events, currently 2246 events, that have contributed to the growth of biotechnology. Click here to browse the timeline. For timelines for specific sciences click here: antibodies, CRISPR-Cas9, genetics, gene therapy, immunotherapy, monoclonal antibodies, vaccines, virology. For timelines for specific places click here: Cambridge University, Harvard University, The Laboratory of Molecular Biology, The Pasteur Institute, Rockefeller University, The Wistar Institute. For timelines for specific people click here: Cesar Milstein, Fred Sanger, Donall Thomas, Herman Waldmann.

The untold story of monoclonal antibodies

Yale University Press 9780300167733

Ever since the COVID-19 pandemic began, the media has been filled with stories about the use of antibodies for both diagnosing and treating the disease. Both the antibody tests and therapeutics have not appeared out of nowhere. They rest on a major breakthrough that was made in Britain in 1975 by César Milstein and Georges Köhler at the Laboratory of Medicine in Cambridge, which provided a means to produce endless quantities of what are known as monoclonal antibodies. Awarded the Nobel Prize in 1984, Milstein and Köhler's invention marked a major turning point as before then there was no means to produce standardised antibodies.

Derived from naturally occurring proteins made by the body's immune system to recognise and fight foreign invaders, like bacteria and viruses, monoclonal antibodies have had a phenomenally far-reaching effect on our society and daily life. Though unfamiliar to most non-scientists, these microscopic protein molecules are everywhere, quietly shaping our lives and healthcare. They have radically changed understandings of the pathways of disease, enabling faster, cheaper, and more accurate clinical diagnostic testing. More than 100 monoclonal antibody drugs have also been approved in the past 30 years.

How Milstein and Köhler developed the first monoclonal antibodies and they went onto become one of medicine's most important tools is recounted by Lara Marks in her book 'The Lock and Key of Medicine' (Yale University Press, Amazon).

In August 2020 the book was listed in The Guardian by Mark Honigsbaum as among the top best books on medical breakthroughs alongside that of James Watson's memoir 'The Double Helix' and Rebecca Skloot's 'The Immortal Life of Henrietta Lacks'.

Engineering Health: How Biotechnology Changed Medicine

The Royal Society of Chemistry 978-1-78262-084-6

Possibly never in recent history have advances in biotechnology generated so much public interest than during the unfolding of the COVID-19 epidemic. The unprecedented pace at which vaccines have been developed and diagnostic tests rolled out could not have been achieved without the many different biological tools that have emerged since the 1970s. But what are these tools, what are their origins and where are they helping improve patients' lives? This is the subject of 'Engineering Health: How Biotechnology Changed Medicine' edited by '' (The Royal Society of Chemistry).

As the book makes clear,applying new biotechnologies in medicine is not without great challenges. As medicines shift from small organic molecules to large, complex structures, such as therapeutic proteins, drugs become difficult to make, administer and regulate. Among the technologies examined in the book are genetic engineering, DNA sequencing, monoclonal antibodies, stem cells, gene therapy, cancer immunotherapy and the most recent newcomer - synthetic biology.

The book will intrigue anyone interested in medicine and how we have been, and may continue to, engineer better health for ourselves. Such changes have major implications for how and where drugs are manufactured, the cost of medicine and the ethics of how far society is prepared to go to combat disease.

Book review: Michael Gross, ‘The book has turned out surprisingly readable, with Marks' own chapters being very accessible and lay-friendly. The book impresses with 19th and 20th century historical connections to things that are topical today.’ Chemistry & Industry Magazine, Issue 05, 2018.

Celebrating the first publication of monoclonal antibodies

It is now over 40 years since César Milstein and Georges Kohler published their technique for producing monoclonal antibodies. To celebrate the occasion we invite you to watch the film Un Fuegito about the life and work of Milstein, produced by Ana Fraile, Pulpofilms. The film, which you can find on vimeo.com, has been released to help raise funds for a new educational film to promote greater understanding about monoclonal antibodies and how they have transformed the lives of millions of patients across the world.

The Debate: Genome editing

Scientists have recently begun to adopt a new technique for genetic engineering, called CRISPR-Cas9, in a wide number fields ranging from agriculture to medicine. Part of its attraction is that it permits genetic engineering on an unprecedented scale and at a very low cost. The technique is already being used in a variety of fields (click here for more information about CRISPR-Cas9). But because of its potential to modify DNA in human embryos, it has prompted calls for a public debate about where the technology should be applied. Researchers working with WhatIsBiotechnology.org recently ran a pilot survey to gather people's views on the new technology. Dr Lara Marks, Managing Editor of WhatisBiotechnology.org and historian of medicine and Dr Silvia Camporesi, bioethicist at King's College London, led the project. Some 567 people contributed to the debate. The analysis of their contributions is available on this page.

Forthcoming projects

We are developing a number of new and exciting projects with highly talented partners and collaborators. This includes one with St Saviour's and St Olave's School and Create Fertility to bring to life the history behind IVF to improve young people’s understanding about the challenge of infertility and the science behind its treatment. We are also developing a project with the Education Development Center and the Hepatitis B Foundation to raise greater awareness about how vaccines are made and work to prevent disease, starting with the story of the hepatitis B vaccine.

Respond to or comment on this page on our feeds on Facebook, Instagram or Twitter.