Immune checkpoint inhibitors
Definition
Checkpoint inhibitors are drugs that help release the brakes cancer cells put on the immune system to prevent their destruction. This is usually achieved with an antibody which is used to block certain proteins carried on the surface of cancer cells that prevent their recognition by the immune system and hence their destruction.
Metatastic melanoma cells dividing and spreading. Immune checkpoint inhibitor drugs are now a promising treatment for advanced melanoma. Credit: Julio C Valencia, NCI Center for Cancer Research.

Connections James Allison | Cancer immunotherapy | Monoclonal antibodies
Importance
Immune checkpoint inhibitor drugs have been hailed as a major breakthrough for cancer treatment by oncologists. What is particularly impressive is how durable and long-lasting the responses are. Patients originally given just weeks to live, survive for many years following treatment. Where the drugs have proven particularly helpful has been in the treatment of patients with metastatic cancer, particularly melanoma and lung cancer. Here the drugs have helped convert what were once considered fatal diseases into a chronic condition. The drugs are also thought to have potential for the treatment of renal cell carcinoma, non–small cell lung cancer, urothelial cancer, head and neck cancer, ovarian cancer and various lymphomas.
As of March 2017 the US FDA had approved five checkpoint inhibitor drugs: ipilimumab (Yervoy®), pembrolizumab (Keytruda®), nivolumab (Opdivo®), atezolizumab (Tecentriq®) and avelumab (Bavencio®). Dozens of clinical trials were also underway with immune checkpoint inhibitors for a broad range of conditions. Just how far the field has progressed can be seen from that the fact that analysts from Visiongain have forecast that the overall global market for immune checkpoint inhibitors for cancer will be just over $16 billion in revenue by 2020.
Discovery
The history of checkpoint inhibitors stretches back to the early twentieth century. In 1910 two Jewish Austrian physicians, Ernest Freund and Gisa Kaminer based at the Rudolf-Stiftung Hospital in Vienna, noticed that blood serum taken from healthy individuals could dissolve cancer cells whereas that of cancer patients could not. By 1924 they had found a substance in the intestines of cancer patients which when added to normal serum reduced its ability to dissolve cancer cells. News of their finding quickly spread across the world. Their discovery, however, was soon forgotten and in 1938, following the annexation of Austria by Nazi Germany, both physicians fled to London where they soon died.
Many years later, in 1966, Karl and Ingegerd Hellstrom, a Swedish couple based at the Fred Hutchinson Cancer Center spotted that serum taken from mice with chemically induced tumours suppressed the reaction of lymphocytes. They attributed this to some sort of blocking factor. In 1971 they published a paper in Advances in Immunology suggesting that 'blocking antibodies bind to the target tumour cells and thereby mask their antigens from detection by immune lymphocytes'. By 1982 this paper had been cited 653 times, making it a citation classic.
It would take some time before the exact blocking mechanism was unravelled. This was eventually pieced together as a result of a discovery made in 1987. That year a French group of researchers, led by Jean-Francoise Brunet, detected a new protein on the surface of T lymphocytes. They called the new molecule ‘cytotoxic T lymphocyte-associated antigen 4’ (CTLA-4).
For a number of years it remained unknown what role CTLA-4 played. The mystery was finally solved in 1995 by two teams working independently from each other: one led by James Allison at the University of California at Berkeley and the other by Jeffrey Bluestone at the University of California San Francisco. They showed that CTLA-4 could inhibit the activity of T cells. Allison was the first to realise the same mechanism could provide a means of treating cancer. To this end he developed a monoclonal antibody (Mab) to block CTLA-4. Encouragingly, the Mab inhibited the growth of tumours in mice. The University of California soon took out a patent on his technique.
Based on his results Allison began looking for a commercial partner to develop his idea further. Most companies, however, were reluctant to take on such a venture. In part this was because he was suggesting the suppression of a natural brake on the immune system to unleash an attack on the cancer. This contrasted other forms of immunotherapy, most of which were designed to ramp up the immune system to attack cancer. Many immunology researchers were additionally sceptical about the efficacy of an antibody based treatment for cancer.
By 1999, however, Allison’s patent had been licensed to Medarex, a small biotechnology company founded in Princeton in 1987. This was instigated by two of the company’s key scientists, Alan Korman and Nils Lonberg, who were some of the first to grasp the potential of Allison’s work. In 2000 Medarex launched its first clinical trials with a human Mab binding to CTLA-4. This paved the way to the approval of ipilimumab for the treatment of metastatic melanoma by the FDA in 2011. It was the first immune checkpoint inhibitor to reach market.
Three years later the FDA approved another immune checkpoint inhibitor, nivolumab, developed by Medarex. This was founded on the back of the discovery of another protein related to CTLA-4 on T cells that could inhibit their activity. Called PD-1, this protein was first spotted in 1992 by Tasuku Honjo and his colleagues at Kyoto University, but its function remained an enigma until the late 1990s when it was shown to help dampen the immune response after the elimination of a disease. Soon after this, Gordon Freeman and colleagues at the Dana-Farber Institute demonstrated that cancer cells were capable of hijacking the PD-1 protein to evade attack by the immune system.
Following the success of ipilimumab several other immune checkpoint pathways have begun to be explored the treatment of cancer. This has been aided by ongoing research into the regulation of immune responses. These have uncovered a number of important molecules, including the lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and mucin domain-containing 3 (TIM3) protein, Indoleamine-2,3-dioxygenase (IDO) and VISTA, short for V-domain Ig suppressor of T cell activation. Out of all of the molecules now being investigated, the greatest progress has made so far with LAG3.
In 2015 it was estimated that there more than 1,000 immune checkpoint clinical trials underway. Such trials are exploring not only new immune checkpoint pathways but also different combinations of immune checkpoint inhibitors together with radiation, chemotherapy and targeted therapies.
Issues
While immune checkpoint inhibitor drugs now offer a promising treatment for advanced cancer, they can cause serious side effects some of which can be fatal. Ipilimumab, for example, can cause lung inflammation and hepatitis. In some cases patients find the toxicity of ipilimumab so intolerable that they stop taking it. Managing the adverse events can also be expensive.
Another major problem with immune checkpoint inhibitors is that they only work for about a quarter of all cancers. One of the reasons for this is that cancer cells not only inhibit pathways that affect T cell functions. This is beginning to be addressed by the use of a combination of different drugs and the development of treatments that targeting other immune-evasion mechanisms.
In addition to the above, the costs of treatment with checkpoint inhibitor medications are substantial which is imposing a significant burden on healthcare resources. The high price tag associated with checkpoint inhibitors are not unique and are reflective of an ongoing issue with other antibody based treatments and innovative medicines.
This profile was written by Lara Marks in May 2017. Thanks go to Nils Lonberg and Donald Drakeman for reading earlier drafts of the work. For a fuller history of checkpoint inhibitors see L. Marks, 'The changing fortune of immunotherapy', in L. Marks, ed. Engineering Health: Biotechnology and Medicine, Royal Society of Chemistry, 2018.
Immune checkpoint inhibitors: timeline of key events
Date | Event | People | Places |
---|---|---|---|
1910 | Austrian physicians Ernest Freund and Gisa Kaminer observed that something in blood serum from cancer patients pervents the destruction of cancer cells | Freund, Kaminer | Rudolf-Stiftung Hospital |
1924 | Austrian physicians Ernest Freund and Gisa Kaminer discover a substance in intestines of cancer patients that reduce ability of normal serum to dissolve cancer cells. | Freund, Kaminer | Rudolf-Stiftung Hospital |
February 1969 | Team led by Karl and Ingegerd Hellstrom observe serum from mice with chemically induced tumours can block reaction of lymphocytes | Hellstrom, Evans, Heppner, Pierce, Yang | Fred Hutchinson Cancer Center |
26 Jun 1970 | Padmanee Sharma born in Gerogetown, Guyana | Sharma | MD Anderson Cancer Center |
June 1971 | Hellstom team suggest that antibodies bound to tumour cells mask their detection by the immune system | Sjogren, Hellstrom, Bansal | Fred Hutchinson Cancer Center |
July 1987 | Identification of the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) | Brunet, Denizot, Luciani, Roux-Dosseto, Suzan, Mattei, Golstein | INSERM-CNRS |
December 1988 | Scientists report cloning the gene for the human cytotoxic T lymphocyte-associated antigen (CTLA-4) | Dariavach, Mattei, Golstein, Lefranc | INSERM-CNRS |
May 1990 | Discovery of lymphocyte activation gene 3 (LAG3) | Triebel, Jitsukawa, Baixeras, Roman-Roman, Genevee, Viegas-Pequinot, Hecend | Institut Gustave-Roussy |
November 1992 | PD-1 (programmed cell death protein 1) discovered by team led by Tasuku Honjo | Honjo | Kyoto University |
1 Jan 1995 | Two teams, one led by James Alison and the other by Jeffrey Bluestone, independently show CTLA-4 can inhibit the activity of T cells | Allison, Bluestone, Leach, Krummel | University of California Berkeley, University of California San Francisco |
22 Mar 1996 | Mice experiments published demonstrating that blocking the CTLA-4 molecule on immune cells can cure cancer | Leach, Krummel, Allison | University of California Berkeley |
2000 | First clinical trials launched to test first immune checkpoint inhibitor drug containing a monoclonal antibody against CTLA-4 (ipilimumab, Yervoy®) | Allison | Medarex, University of California Berkley |
October 2000 | PD-1 protein shown to be important mechanism in dampening down the immune response | Freeman, Long, Iwai | Dana-Farber Cancer Institute |
2002 | T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) discovered | ||
17 Sep 2002 | Cancer cells shown to be capable of hijacking PD-1 protein to evade destruction by immune system | Iwai , Ishida, Tanaka, Okazaki, Honjo, Minato | Japan Science and Technology Corporation |
May 2005 | Medarex and Ono Pharmaceuticals entered research alliance to develop a fully human anti-PD-1 antibody for the treatment of cancer | Medarex, Ono Pharmaceutical | |
2006 | Inducible co-stimulator (ICOS) protein found to enhance anti-CTLA-4 treatment in destruction of cancer cells | Sharma, Liakou, Kamat, Ng Tang, Chen, Sun, Troncoso, Logothetis | MD Anderson Cancer Center |
24 Nov 2008 | First anti-PD-1 antibody entered phase 1 clinical trial for cancer | Medarex, Ono Pharmaceutical | |
25 Mar 2011 | First immune checkpoint inhibitor drug targeting CTLA4 (ipilimumab, Yervoy®), approved by the FDA | Allison | Medarex, University of California Berkley |
September 2014 | FDA approved nivolumab (Opdivo®), an immune checkpoint inhibitor targeting PD1, for treating melanoma | ||
22 Dec 2014 | First immune checkpoint inhibitor drug targeting PD-1 approved in US | Honko, Freeman, Lonberg | Medarex, Bristol-Myers Squibb, Ono Pharmaceutical, Kyoto University |
27 Aug 2015 | Experiments with mice showed that azacytidine treatment enhanced the responsiveness of tumors to anti–CTLA-4 therapy | ||
27 Nov 2015 | Experiments in mice indicate that a tumour's response to cancer immunotherapy using CTLA-4 checkpoint inhibitor can be improved by changing the gut microbiome | Zitvogel, Veitzou, | Institut Gustave Roussy |
25 Mar 2016 | Common tags discovered on the surface of cancer cells opening up new avenues for immunotherapy | McGranahan, Furness, Rosenthal, Ramskov, Lyngaa, Saini, Jamal-Hanjani, Wilson, Birkbak, Hiley, Watkins, Shafi, Murugaesu, Mitter, Akarca, Linares, Marafioti, Henry, Van Allen, Miao, Schilling, Schadendorf, Garraway, Makarov, Rizvi,m Snyder, Hellman, Mergh | University College London, Cancer Research UK, Francis Crick Insitute, Dana-Farber Cancer Institute, Broad Institute, University Duisburg-Essen, Memorial Sloan Kettering Cancer Center, Columbia Univertsity, Weill Cornell Medical College, Harvard Medical S |
24 Oct 2016 | FDA approved pembrolizumab (Keytruda®) for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 as determined by an FDA-approved test. | Merck | |
24 Feb 2017 | Researchers report patients with greater diversity of gut bacteria have better response to cancer immunotherapy | Wargo, Gopalakrishnan | MD Anderson Cancer Center |
23 Mar 2017 | FDA granted accelerated approval to avelumab, a PD-L1 checkpoint inhibitor, to treat Merkel cell carcinoma, a rare form of skin cancer treatment, in patients 12 years and older with metastatic Merkel cell carcinoma, a rare form of skin disorder | EMD Serono, Merck KGaA, Pfizer | |
20 Sep 2017 | Nivolumab (Opdivo®) made available for NHS patients with advanced lung cancer | Honko, Freeman | Medarex, Bristol-Myers Squibb, Ono Pharmaceutical |
2 Nov 2017 | Cancer patients taking routine antibiotics before or soon after given PD-1 checkpoint inhibitor found to relapse quicker and have shorter survival time | Zitvogel, Kroemer | Institut Gustave Roussy |
2 Nov 2017 | Experiments with mice show tumour growth can be reduced by giving faecal transplants from patients who positively responded to cancer immunotherapy | Wargo, Gopalakrishnan | MD Anderson Cancer Center, Institute Gustave-Roussy |
1 Oct 2018 | James Allison and Tasuku Honjo were awarded the Nobel Prize in Physiology or Medicine for their discovery of immune checkpoint inhibitors for cancer therapy | Allison, Honjo | University of Texas MD Anderson Cancer Center, Kyoto University |
14 Dec 2022 | First randomised-trial testing of mRNA vaccine for cancer to boost immunotherapy reported to be promising in patients with metastatic skin cancer | Moderna, Merck | |
1910
Austrian physicians Ernest Freund and Gisa Kaminer observed that something in blood serum from cancer patients pervents the destruction of cancer cells
1924
Austrian physicians Ernest Freund and Gisa Kaminer discover a substance in intestines of cancer patients that reduce ability of normal serum to dissolve cancer cells.
Feb 1969
Team led by Karl and Ingegerd Hellstrom observe serum from mice with chemically induced tumours can block reaction of lymphocytes
26 Jun 1970
Padmanee Sharma born in Gerogetown, Guyana
Jun 1971
Hellstom team suggest that antibodies bound to tumour cells mask their detection by the immune system
Jul 1987
Identification of the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)
Dec 1988
Scientists report cloning the gene for the human cytotoxic T lymphocyte-associated antigen (CTLA-4)
May 1990
Discovery of lymphocyte activation gene 3 (LAG3)
Nov 1992
PD-1 (programmed cell death protein 1) discovered by team led by Tasuku Honjo
1 Jan 1995
Two teams, one led by James Alison and the other by Jeffrey Bluestone, independently show CTLA-4 can inhibit the activity of T cells
22 Mar 1996
Mice experiments published demonstrating that blocking the CTLA-4 molecule on immune cells can cure cancer
2000
First clinical trials launched to test first immune checkpoint inhibitor drug containing a monoclonal antibody against CTLA-4 (ipilimumab, Yervoy®)
Oct 2000
PD-1 protein shown to be important mechanism in dampening down the immune response
2002
T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) discovered
17 Sep 2002
Cancer cells shown to be capable of hijacking PD-1 protein to evade destruction by immune system
May 2005
Medarex and Ono Pharmaceuticals entered research alliance to develop a fully human anti-PD-1 antibody for the treatment of cancer
2006
Inducible co-stimulator (ICOS) protein found to enhance anti-CTLA-4 treatment in destruction of cancer cells
24 Nov 2008
First anti-PD-1 antibody entered phase 1 clinical trial for cancer
25 Mar 2011
First immune checkpoint inhibitor drug targeting CTLA4 (ipilimumab, Yervoy®), approved by the FDA
Sep 2014
FDA approved nivolumab (Opdivo®), an immune checkpoint inhibitor targeting PD1, for treating melanoma
22 Dec 2014
First immune checkpoint inhibitor drug targeting PD-1 approved in US
27 Aug 2015
Experiments with mice showed that azacytidine treatment enhanced the responsiveness of tumors to anti–CTLA-4 therapy
27 Nov 2015
Experiments in mice indicate that a tumour's response to cancer immunotherapy using CTLA-4 checkpoint inhibitor can be improved by changing the gut microbiome
25 Mar 2016
Common tags discovered on the surface of cancer cells opening up new avenues for immunotherapy
24 Oct 2016
FDA approved pembrolizumab (Keytruda®) for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express PD-L1 as determined by an FDA-approved test.
24 Feb 2017
Researchers report patients with greater diversity of gut bacteria have better response to cancer immunotherapy
23 Mar 2017
FDA granted accelerated approval to avelumab, a PD-L1 checkpoint inhibitor, to treat Merkel cell carcinoma, a rare form of skin cancer treatment, in patients 12 years and older with metastatic Merkel cell carcinoma, a rare form of skin disorder
20 Sep 2017
Nivolumab (Opdivo®) made available for NHS patients with advanced lung cancer
2 Nov 2017
Cancer patients taking routine antibiotics before or soon after given PD-1 checkpoint inhibitor found to relapse quicker and have shorter survival time
2 Nov 2017
Experiments with mice show tumour growth can be reduced by giving faecal transplants from patients who positively responded to cancer immunotherapy
1 Oct 2018
James Allison and Tasuku Honjo were awarded the Nobel Prize in Physiology or Medicine for their discovery of immune checkpoint inhibitors for cancer therapy
14 Dec 2022
First randomised-trial testing of mRNA vaccine for cancer to boost immunotherapy reported to be promising in patients with metastatic skin cancer
Science links: Science home | Cancer immunotherapy | CRISPR-Cas9 | DNA | DNA extraction | DNA polymerase | DNA Sequencing | Epigenetics | Faecal microbiota transplant | Gene therapy | Infectious diseases | Messenger RNA (mRNA) | Monoclonal antibodies | Nanopore sequencing | Organ-on-a-chip | p53 Gene | PCR | Phage display | Phage therapy | Plasmid | Recombinant DNA | Restriction enzymes | Stem cells | The human microbiome | Transgenic animals |
Respond to or comment on this page on our feeds on Facebook, Instagram, Mastodon or Twitter.