Gene therapy
Definition
Gene therapy is a type of treatment designed to modify the expression of an individual’s genes or to correct abnormal genes to treat a disease.
R. Michael Blaese, W. French Anderson and Kenneth Culver at a press conference announcing the start of the first gene therapy trial for treating children with severe combined immunodeficiency, 13 September 1990. Source: National Cancer Institute

Connections Cancer immunotherapy
Importance
Gene therapy gained a lot of commercial interest in the 1980s. In part this was because many assumed such treatment would move swiftly and easily from proof of concept into clinical trials. Such hopes, however, were dashed following the death of the first patient in a gene therapy trial in 1999. It would take another decade before optimism about the therapy resurfaced. From 2008 onwards dozens of new start-ups began to be created around gene therapy. These were founded on the back of sponsorship from pharmaceutical companies and the stock market. Just how much weight began to be attached to gene therapy can be seen by the stock market’s valuation of Juno Therapeutics. In 2014, just one year after Juno was set up, the company was valued at US$4 billion. When the first gene therapy was approved in the United States there were 854 companies developing such therapies. According to the Alliance for Regenerative Medicine there were 1085 companies in that space by the end of 2020 and more than 400 gene therapy trials under way.
Discovery
Scientists first demonstrated the feasibility of incorporating new genetic functions in mammalian cells in the late 1960s. Several methods were used. One involved injecting genes with a micropipette directly into a living mammalian cell. Another exposed cells to a precipitate of DNA containing the desired genes. A virus could also be used as a vehicle, or vector, to deliver the genes into cells.
One of the first people to report the direct incorporation of functional DNA into a mammalian cell was Lorraine Kraus at the University of Tennessee. In 1961 she managed to genetically alter the haemoglobin of cells from bone marrow taken from a patient with sickle-cell anaemia. She did this by incubating the patient’s cells in tissue culture with DNA extracted from a donor with normal haemoglobin. Seven years later, Theodore Friedmann, Jay Seegmiller and John Subak-Sharpe at the National Institutes of Health (NIH), Bethesda, successfully corrected genetic defects associated with Lesch-Nyhan syndrome, a debilitating neurological disease. They did this by adding foreign DNA to cultured cells collected from patients suffering from the disease.
The first humans to receive gene therapy took place in 1970. It was administered to two very young West German sisters suffering from hyperargininemia, an extremely rare genetic disorder that prevents the production of arginase. This is an enzyme that helps prevent the build up of arginine in bodily fluids. Any accumulation can cause brain damage, epilepsy and other neurological and muscular problems. Each sister received an injection of a rabbit virus (Shope papilloma) known to induce the production of arginase. The injection was given as a last desperate measure to rescue the children. The treatment was carried out by Stanfield Rogers, an American physician, together with H. G. Terheggen, a German paediatrician. They took the risk based on observations Rogers had previously made with some laboratory technicians at Oak Ridge National Laboratory who became infected with the rabbit virus when working with it. None of the technicians experienced ill-effects from the virus but had abnormally low levels of arginine in their blood. This was apparent even in a technician whose last exposure to the virus had been 20 years before. Rogers connected the technicians’ abnormal arginine levels with a gene in the rabbit virus which was known to encourage the production of arginase in rabbits. By giving the rabbit virus to the girls, Rogers hoped to transfer genetic instructions to their cells to produce arginase. After the two sisters were treated a third sister was born afflicted with hyperargininemia. She was also injected with the virus. Disappointingly none of the sisters responded to the treatment.
A new pathway for gene therapy opened up with the development of genetic engineering in the early 1970s. The technique provided two key tools. Firstly, a means to clone specific disease genes. Secondly, an efficient method for gene transfer. The potential of the technology for gene therapy was first highlighted by the US scientists Theodore Friedmann and Richard Roblin. In 1972 they published an article in Science suggesting genetically modified tumour viruses might be used to transfer the necessary genetic information to treat genetic disorders in patients.
The technique was first tried out in the case of beta-thalassemia. Linked to an inherited defect in a gene for beta-globin, this blood disorder usually causes premature death. The beta-globin gene was first cloned by scientists at Cold Spring Harbor Laboratory and Harvard University in 1976. It was the first disease gene ever cloned. Three years later, a team led by Martin Cline at the University of California, Los Angeles, reported the successful introduction of the gene into the bone marrow of irradiated mice. Following this, Cline and his team unsuccessfully tried to treat two beta-thalassemia patients, one in Italy and another in Israel by inserting the gene into bone marrow extracted from them and then reinfusing the cells. Cline was immediately reprimanded for failing to secure the necessary permission from his home institution’s Institutional Review Board to carry out the work and having insufficient animal data to demonstrate the effectiveness of his procedure. The incident cost Cline his university chair and most of his funding from the NIH. It also ignited a furious public debate about the social and ethical implications of gene therapy. This led to the tightening up of regulations for the future testing of gene therapy in humans, which were to be overseen by the NIH’s Recombinant DNA Advisory Committee (RAC).
Gene therapy entered a new era in the 1980s following the discovery of retroviruses which proved a much more efficient tool for gene transfer. The first suitable retroviral vector for gene therapy was developed by Richard Mulligan, a researcher at Massachusetts Institute of Technology and former doctoral student of Paul Berg, a key pioneer in genetic engineering at Stanford University. By 1983 Mulligan had managed to genetically modify a mouse leukemia retrovirus with his colleagues so that it could deliver any desired DNA without reproducing in humans. The new vector also contained a selective marker, a piece of DNA from Escherichia coli bacteria, which made it possible to identify how many genes a cell picked up during gene transfer.
One of the first people to use Mulligan’s new vector was French Anderson, a geneticist at the NIH’s National Heart, Lung and Blood Institute. By 1989 he had secured permission from the RAC to begin the first approved clinical trial with gene therapy. This was to be done with the help of Michael Blease, a paediatrician and immunologist. The team’s aim was to test gene therapy in children with severe combined immunodeficiency, an inherited immune disorder caused by a defective adenosine deaminase (ADA) gene. Most children born with the disorder did not live long and only survived by being confined in sterile plastic enclosures, giving rise to the term ‘bubble disease’. Those with the condition had only two treatment options. The first was to have a bone marrow transplant, but this was hampered by the need to find a matching donor and the risks of an immune reaction. The second was to have frequent injections of PEG-ADA, a synthetic enzyme. Children who had such treatment usually showed a marked improvement after the first injection but this was usually of short duration and subsequent doses were largely ineffective.
Prior to treating the children the team partnered with Steven Rosenberg at the National Cancer Institute (NCI) conducted a test of their proposed procedure in a 52 year old man dying from malignant melanoma in May 1989. This was designed to assess three things: assess the safety of Mulligan’s retroviral vector, determine how much of the marked gene it could transfer and how long the gene lasted. The experiment involved a number of stages. In the first instance, the scientists needed to cultivate tumour infiltrating lymphocytes (TIL cells), a type of tumour-killing cell. This involved incubating white blood cells removed from the man’s tumour with interleukin-2, a molecule found to activate T in the destruction of cancer cells in the 1960s. A DNA marker was then inserted into the TIL cells before they were reinfused into the patient. The same procedure was repeated in seven more patients at the NCI with terminal malignant melanoma. Encouragingly all of the patients absorbed the marker genes with no ill-effects and a third of them responded positively to the treatment. One experienced a near-complete remission. The study marked a major turning point. Firstly, it established the feasibility and safety of gene therapy. Secondly, it opened the door to the development of gene therapy for cancer.
Anderson’s team started trying out the gene therapy in children with ADA-SCID in early 1990. The first patient to receive the therapy was Ashanti DeSilva, a four year old girl. Her treatment lasted twelve days. It necessitating extracting Ashanti’s blood cells, inserting a new working copy of the ADA gene into them and then reinfusing the cells into her. Overall, the procedure was similar to a bone marrow transplant. The goal was to replenish Ashanti’s blood cells with ones that could produce ADA. Gene therapy had the advantage that the cells originated from Ashanti so there was no risk of rejection. To everyone’s delight Ashanti improved so much she no longer needed to be kept in isolation and was able to start school. She remains alive to this day.
Numerous gene therapy trials were launched in the 1990s in the light of the success with Ashanti. A significant shift took place during this decade. Critically the field moved away from just looking to treat rare diseases caused by a single gene, as had been the case with Ashanti. By 2000 gene therapy had been tried out in nearly 3,000 patients in almost 400 trials. Most of the trials targeted cancer, but cardiovascular disease, AIDS, cystic fibrosis and Gaucher disease were also investigated.
Some of the early enthusiasm for gene therapy witnessed at the beginning of the decade, however, had begun to disappear by the end of the 1990s. This was because researchers struggled to get the therapy to work because of the inefficiency of the retroviral vectors they had to hand. Negative attitudes to gene therapy increased following the first death in a trial. In September 1999, Jesse Gelsinger, an 18 year old American died while taking part as a volunteer in a dosing escalation trial. Led by James M Wilson, the trial was designed to treat newborn infants with a fatal inherited a metabolic disorder, known as ornithine transcarbamylase deficiency, which leads to the buildup of excessive ammonia in the body. Gelsinger had himself been born with the condition, but had managed to keep it in check by restricting his diet and taking special medications. He was allocated to the last group in the trial who received the highest dose. Four days after treatment Gelsinger died from major organ failure because of his violent immune reaction to the vector used in the treatment. The vector was derived from adenovirus, a group of viruses first isolated from the tonsils and adenoid tissue of children in the early 1950s. One of the reasons such a virus was used was because such viruses were well characterised and had a small genome so were easy to manipulate. Moreover, most people carry adenoviruses without experiencing any significant clinical symptoms. Investigations into Gelsinger’s death revealed insufficient care had been taken during the trial and poor clarity in terms of its safety guidelines.
While the tragedy led to the enforcement of more stringent regulations for gene therapy trials, Gelsinger was not the last to suffer the consequences of an adenoviral vector. Three years later, in 2002, a number of British and French children were discovered to have developed T cell leukaemia three years after receiving gene therapy for a form of SCID linked to a defect on the X chromosome. Their cancer turned out to have been caused by an adenoviral vector that integrated into a part of their genome that activated a gene for leukaemia. This too the scientists by total surprise because most adenoviruses are unable to integrate into the host genome.
Despite the difficulties, gene therapy began to turn a corner the following decade, aided by the arrival of safer and more effective vectors. Positive results began to be reported for a number of gene therapy trials. Most were small-scale academic studies. In 2007 Jean Bennett, an ophthalmologist at the University of Pennsylvania, demonstrated in a small trial that gene therapy could provide a promising treatment for inherited retinal disease. Subsequent trials in more patients carried out in 2015 backed this up. In addition to eye disease, gene therapy was found to help haemophilic patients, a number of whom no longer needed to take blood clotting factor drugs. Good news also emerged in 2015 from trials of gene therapy for rare single-mutation blood diseases like thalassemia and sickle-cell anaemia, with some patients able to stay healthy without blood transfusions. A year later, two small trials showed gene therapy could help in the treatment of patients with cerebral adrenoleukodystrophy, an inherited disorder that affects the central nervous system, and with spinal muscular atrophy, a neuromuscular disease that is one of the leading causes of genetic death in infants.
The first gene therapy was licensed in China in 2003. Designed for the treatment of neck and head cancer, this treatment did not make it across to other countries. The first gene therapy was approved in Europe nine years later. It was developed by UniQure, a Dutch company for treating lipoprotein lipase deficiency, a rare metabolic disease that causes acute and recurrent abdominal pain and inflammation of the pancreas. The drug, however, failed to be a commercial success because too few patients needed the drug. This led to UniQure withdrawing marketing authorisation for the drug by 2017.
In 2016 Europe licensed a second gene therapy, developed by GlaxoSmithKline for children suffering from ADA-SCID. A year later Novartis secured approval for the first gene therapy in the United States. Designed to treat acute lymphoblastic leukaemia, the therapy had grown out of the preliminary work Anderson and Rosenberg had originally undertaken to establish the safety of gene therapy for treating children with ADA-SCID in 1989.
Application
Gene therapy takes different forms. It can involve the insertion of a copy of a new gene, modifying or inactivating a gene, or correcting a gene mutation. This is done with the help of a vector derived from a genetically modified virus. Several different viral vectors are now used for this purpose.
Adenoviral vectors are some of the most common ones. These vectors work best in nondividing cells such as found in the brain or retina. Lentiviral vectors are also popular. These are derived from lentiviruses, a group of retroviruses. Two of the most commonly used, which emerged in the late 1990s, are the human immunodeficiency virus and the herpes simplex virus. Such vectors have the advantage that they can carry large quantities of genes and work in non-dividing cells. Nonetheless, they, present some safety issues because it is difficult to predict where they will integrate into the host genome. For this reason, lentiviral vectors are generally deployed in the genetic alteration of cells extracted from patients. Lentiviral vectors are particularly helpful in the introduction of genes into the genome of cells that are generally difficult to modify. Lentiviral vectors made from the herpes simplex virus are currently being used in gene therapies being explored for pain and brain diseases.
New horizons have opened up for gene therapy with the recent development of CRISPR-Cas9, a much more precise technique for altering genes. At the end of 2016 a group of Chinese scientists, led by the oncologist Lu You at Sichuan University, launched a safety trial to see if it was possible to treat cancer patients by using CRISPR-Cas to disable a particular gene in their cells that codes for the PD1 protein which often impedes a cell’s immune response to cancer. A few months later, in 2017, a similar trial was initiated by an American team headed by Carl June at the University of Pennsylvania.
Issues
While gene therapy has made remarkable progress in the last few years, its development still raises significant questions in terms of safety. One of the major differences between gene therapy and conventional small molecule drugs or other biological products, like protein therapeutics, is that once gene therapy has been administered it is difficult to stop treatment. It is also too early to know how long the effects of a gene therapy last. Moreover, too few patients have been given gene therapy for any length of time to know whether it poses any safety risks long term.
Another major stumbling block is that so far the price of gene therapy has been incredibly high. Gene therapies are currently some of the most expensive treatments on the market. In part this reflects the fact that most of them are custom-made for individual patients.
This piece was written by Lara Marks in January 2018. It draws on the work of Courtney Addison and her chapter ‘Gene therapy: An evolving story’, in Lara V Marks, ed, Engineering Health: How biotechnology changed medicine, (Royal Society of Chemistry, October 2017).
Gene therapy: timeline of key events
Date | Event | People | Places |
---|---|---|---|
22 Nov 1912 | Paul Zamecnik was born in Cleveland, Ohio, USA | Zamecnik | Massachusetts General Hospital |
16 Oct 1943 | Roland Levinsky was born in Bloemfontein, South Africa | Levinsky | Great Ormond Street Hospital, Institute of Child Health, University College London |
16 Dec 1961 | First successful direct incorporation of functional DNA into a human cell | Kraus | University of Tennessee |
10 Dec 1966 | First evidence published suggesting a virus could provide delivery tool for transferring functional genes | Rogers | Oak Ridge National Laboratory |
19 Oct 1968 | American scientists demonstrate that adding foreign genes to cultured cells from patients with Lesch-Nethan syndrome can correct genetic defects that cause the neurological disease | Friedmann, Seegmiller | National Institutes of Health |
1970 - 1975 | Three West German very young sisters fail to respond to first ever administered gene therapy | Rogers, Terheggen | Oak Ridge National Laboratory, Cologne municipal hospital |
3 Mar 1972 | First time gene therapy proposed as treatment for genetic disorders | Friedmann, Roblin | Salk Institute |
June 1976 | First human disease gene, beta-globin, cloned | Maniatis, GekKee, Efstratiadis, Kafatos | |
1979 | Beta-thalassemia gene successfully inserted into bone marrow of irradiated mice | Cline | University of California Los Angeles |
1980 | Gene therapy unsuccessfully tried out in two patients with beta-thalaessemia sparks controversy | Cline | University of California Los Angeles |
22 Apr 1982 | First experiment launched to test feasibility of gene targeting in the human genome | Smithies | University of Wisconsin |
May 1983 | Creation of first retroviral vector suitable for gene therapy | Mann, Mulligan, Baltimore | Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research |
1984 | Experiment published demonstrating possibility of inserting a corrective DNA in the right place in genome of mammalian cells | Smithies, Koralewski, Song, Kucherlapati | University of Wisconsin |
1984 | First cationic (positively charged) lipid synthesised, opening up new possibilities to deliver drugs and gene therapy | Felgner | Syntex Research |
22 Jan 1985 | NIH published its first draft guidelines for proposing experiments in human somatic cell gene theray | ||
19 Sep 1985 | Technique published for the accurate insertion of a corrective DNA in the human genome | Smithies, Gregg, Boggs, Koralewski, Kucherlapati | University of Wisconsin |
1987 | mRNA encapsulated into liposome made with cationic lipids injected into mouse cells shown to produce proteins | Malone, Felgner, Verna | Salk Institute for Biological Sciences, Syntex |
1987 | Vical Corporation founded | Felgner, | Vical |
May 1989 | First human test demonstrated safety of retroviral vector for gene therapy and potential of laboratory produced tumor killing cells for cancer immunotherapy | Anderson, Rosenberg | National Institutes of Health |
December 1989 | First use of genetically engineered T cells to redirect T cells to recognise and attack tumour cells | Gross, Waks, Eshhar | Weizmann Institute |
December 1989 | Concept of enhancing T cells using chimeric antigen receptors published for first time | Gross, Waks, Eshhar | Weizmann Institute |
January 1990 | Gene therapy concept proven in first human trials | Kasid, Morecki, Aebersold, Cornetta, Culver, Freeman, Director, Lotze, Blaese, Anderson | National Cancer Institute |
30 Aug 1990 | Treatment with gene modified tumour-infiltrating lymphocytes shown to be promising immunotherapy for patients with advance melanoma | Rosenberg, Aebersold, Cornetta, Kasid, Morgan, Moen, Karson, Lotze, Yang, Topalian, Merino, Culver, Miller, Blaese, Anderson | National Cancer Institute |
September 1990 | Four year old Ashanti DeSilva becomes first patient successfully treated with gene therapy for severe combined immunodeficiency caused by defective ADA gene | Anderson, Blease, DeSilva | National Institutes of Health |
1992 | Stem cells used as vectors to deliver the genes needed to correct the genetic disorder SCID | Bordignon | Vita-Salute San Raffaele University |
15 Jan 1993 | Chimeric receptor genes added to T lymphocytes shown to enhance power of adoptive cellular therapy against tumours | Eshhar, Waks, Gross, Schindler | Weizmann Institute |
14 Oct 1993 | FDA published its regulations governing gene therapy | ||
17 Sep 1999 | Death of the first patient in a gene therapy trial prompted major setback for the field | Gelsinger, Wilson | University of Pennsylvania |
1999 - 2002 | Multi-centre trials with gene therapy using stem cells to treat children with SCID | Bordignon | |
2000 | Two French boys suffering from SCID reported to be cured using gene therapy | ||
2 Jan 2000 | Polyoma virus shown to be potential tool for delivering gene therapy | Krauzewicz, Stokrova, Jenkins, Elliott, Higgns, Griffin | Imperial College, Czech Academy of Sciences, University of Wales |
1 Jan 2002 | Suspension of French and US gene therapy trials for treating SCID children | ||
1 Jan 2003 | First human trial of gene therapy using modified lentivirus as a vector | ||
16 Oct 2003 | China approved the world's first commercial gene therapy | ||
3 Apr 2005 | Zinc finger method reported capable of modifying some genes in the human genome, laying the foundation for its use as tool to correct genes for monogenic disorders | Urnov, Miller, Lee, Beausejour | Sangamo BioSciences, University of Texas Southwester Medical Center |
6 Oct 2006 | Genetically engineered lymphocytes shown to be promising cancer treatment | Morgan, Dudley, Wunderlich, Hughes, Yang, Sherry, Royal, Topalian, Kammula, Restifo, Zheng, Nahvi Vries, Rogers-Freezer, Mavroukakis, Rosenberg | National Cancer Institute |
15 Oct 2006 | Adoptive cellular therapy using chimeric antigen receptor T cells shown to be safe in small group of patients with ovarian cancer | Kershaw, Westwood, Parker, Wang, Eshhar, Mavroukakis, White, Wunderlich, Canevari, Rogers-Freezer, Chen, Yang, Rosenberg, Hwu | National Cancer Institute, University of Melbourne, M.D. Anderson Cancer Center, Weizmann Institute, Istituto Nazionale Tumori |
2007 | Small trial published demonstrating possibility of using gene therapy for inherited retinal disease | Bennett | University of Pennsylvania |
1 May 2008 | Zinc finger method explored as means to develop treatment for glioblastoma (brain tumour) | Reik, Zhou, Wagner, Hamlett | Sangamo BioSciences |
29 Jun 2008 | Zinc finger method used to make HIV-resistant CD4 cells to develop immunotherapy for HIV | Perez, Wang, Miller, Jouvenot | Abramson Family Cancer Research Institute, Children's Hospital of Philadelphia, Sangamo BioSciences, Bayer |
2009 | Almost blind child with rare inherited eye disease gains normal vision following gene therapy | ||
2009 | Gene therapy halts progression of degenerative disease adrenoleukodystrophy in two boys | ||
11 Feb 2009 | Stem-cell transplant reported to be promising treatment for curing HIV | Hutter | University of Berlin |
27 Dec 2009 | Paul Zamecnik died | Zamecnik | Massachusetts General Hospital |
January 2010 | Gene therapy for treatment of lipoprotein lipase deficiency fails to win European approval | Amsterdam Molecular Therapeutics, UniQure | |
January 2010 | Gene therapy successful in treating beta-thalassaemia | ||
2010 - 2013 | Studies show CD19-specific CAR-modified T cells to be promising treatment in patients with B cell malignancies | Kochenderfer, Kalos, Brentjens | National Cancer Institute, National Institutes of Health, Memorial Sloan-Kettering Cancer Center, University of Pennsylvania |
14 Jan 2010 | Research published suggesting gene therapy could help preserve neural circuits and protect against vision loss in patients with multiple sclerosis | Dorothy Schafer, Werneburg, Jung, Kunjama | University of Massachusetts Medical School, University of Chicago, National Institute of Neurological Disorders and Stroke, University of Connecticut School of Medicine |
1 Jan 2011 | Gene therapy reduces symptoms in six patients with haemophilia B | ||
10 Mar 2011 | Patient suffering from acute myeloid leukaemia is cured of HIV-1 after receiving bone marrow stem cells transplanted from donor with mutated CCR5 gene. This awakens interest in developing HIV treatment that renders a patient's cells resistant to HIV-1 | Allers, Hutter, Hofmann, Loddenkemper, Rieger | Charite-University Medicine Berlin |
14 Jul 2011 | Gene repair kit used successfully to treat blood-clotting disorder haemophilia in mice | Li, Haurigot, Doyon, High | Children's Hospital Philadelphia, Sangamo Biosciences, University of Philadelphia |
January 2012 | European Union asks European Medicines Agency to reconsider approval of alipogene tiparvovec | Amsterdam Molecular Therapeutics, UniCure | |
July 2012 | First gene therapy approved for treatment of patients with familial lipoprotein lipase deficiency | Amsterdam Molecular Therapeutics | |
1 Jun 2013 | Basic studies conducted with TALENs to see if can correct mutant genes associated with Epidermolysis Bullosa, a rare inherited skin disorder | Osborn, Starker, Colby, McElroy | University of Minnesota, National Centre for Tumor Diseases Heidelberg, German Cancer Research Centre, Harvard University |
October 2013 | Fiven children with ADA-SCID successfully treated with gene therapy | ||
January 2014 | Eyesight reported to improve in six patients suffering from choroideremia after receiving gene therapy | MacLaren | Oxford University |
March 2014 | Promising results announced from trial conducted with HIV patients | ||
6 Mar 2014 | Phase I trial using Zinc finger nuclease modified CD4 cells to treat 12 HIV patients shows the approch is safe. | Tebas, Stein, Tang, Frank | University of Pennsylvania |
10 Sep 2014 | Mice trials show CD4 T-cells genetically modified with Zinc fingers could be effective HIV-1 gene therapy | Yi, Choi, Bharaj, Abraham | Texas Tech University, University of North Carolina |
1 Jan 2015 | US FDA cleared Investigative Drug Application for clinical trial of gene therapy for haemophila B. The therapy was the first in vivo genome editing application to enter the clinic | Ewing, Zaia | Sangamo Biosciences, City of Hope National Medical Center |
21 Jul 2015 | Phase 1 clinical trial launched with RNAi treatment for Huntingdon's disease | Isis Pharmaceuticals, Roche | |
October 2015 | First oncology gene therapy approved in US and Europe | Amgen | |
5 Nov 2015 | First successful use of gene therapy to treat baby dying from leukaemia | Vehs, Quasim | Great Ormond Street |
11 Dec 2015 | Preliminary results presented for phase 2 trial using Zinc finger nuclease modified CD4 and CD8 cells to treat HIV patients | Sangamo Biosciences | |
31 Dec 2015 | Gene editiing tool, CRISPR, successfully used to improve muscle function in mouse model of Duchenne muscular dystrophy | Nelson, Gersbach, Hakim, Ousterout, Thakore | Duke University, University of Missouri, University of North Carolina, Massachusetts Institute of Technology, Harvard University |
21 Jun 2016 | 2016: NIH gives green light for first clinical trial using gene editing tool CRISPR/Cas 9 to treat patients | June | University of Pennsylvania |
6 Feb 2017 | Gene therapy shown to restore hearing in deaf mice | Landegger, Pan, Askew, Wassmer, Gluck, Galvin, Taylor, Forge, Sankovic, Holt, Vandenberghe | Eaton Peabody Laboratories, Harvard Medical School, Medical University of Vienna, UCL, Boston's Children's Hospital, Harvard Stem Cell Institute, University of North Carolina, Grousbeck Gene Therapy Center |
2 Mar 2017 | Gene therapy reported to successfully reverse sickle cell disease in first patient | Ribell, Hacien-Bey-Abina, Payen, Magnani, Leboulch | University of Paris |
April 2017 | First gene therapy approved in Europe for lipoprotein lipase deficiency (Glybera) withdrawn from market | uniQure | |
12 Jul 2017 | US FDA Oncologic Drugs Advisory Committee recommended the approval of the first adoptive cell therapy (CAR-T cell therapy) for B cell acute leukaemia | June | Novartis, University of Pennsylvania |
30 Aug 2017 | USA FDA approved CAR-T therapy for certain pediatric and young adult patients with a form of acute lymphoblastic leukemia | June | Novartis, University of Pennsylvania |
4 Oct 2017 | Gene therapy shown in clinical trials to halt progression of adrenoleukodystrophy, a fatal brain disease inherited by boys | Eichler, Duncan, Williams | Harvard University, Bluebird Bio, Boston Children’s Hospital |
16 Nov 2017 | First patient received therapy involving gene editing inside the body | Harmatz, Madeux | University of California San Francisco |
9 Dec 2017 | Gene therapy shown to be safe and efficacious treatment for haemophilia A in British trials | Rangarajan, Walsh, Lester, Perry, Madan, Laffan, Hua Yu, Vettermann, Pierce, Wong, Pasi | Barts Health NHS Trust, Queen Mary University, BioMarin Pharmaceutical |
19 Dec 2017 | US FDA approved gene therapy approved to treat rare genetic retinal disease | Novartis, Spark Therapeutics | |
5 Jan 2018 | Researchers identify pre-existing antibodies targeting CAS9 proteins raising possibility of immune responses undermining utility of CRISPR-Cas9 for gene therapy | Charlesworth, Deshpande, Dever, Dejene,Gomez-Ospina, Mantri, Pavel-Dinu, Camarena, Weinberg, Porteus | Stanford University |
19 Apr 2018 | Gene therapy shown to be promising treatment in clinical trials for beta thalassemia | Thompson, Walters, Kwiatkowski, Rasko, Ribeil, Hongeng, Magrin, Schiller, Payen, Smeraro, Moshous, Lefrer | North Western University, University of California San Francisco, University of California Los Angeles, University of Sydney, University of Paris, Harvard University, Mahidol University, German Cancer Research Centre |
27 Aug 2018 | First CRISPR-Cas9 clinical trial launched | Vertex Pharmaceuticals, CRSIPR Therapeutics | |
23 Nov 2018 | Gene therapy approved in Europe for treatment of patients with vision loss linked to genetic mutation | Novartis, Spark Therapeutics | |
5 Mar 2019 | Second patient reported free of HIV after receiving stem-cell therapy | Gupta | University of Cambridge |
19 Apr 2019 | Gene therapy shown to be promising in treating infants born with X-linked severe combined immunodeficiency (SCID-X1) | Mamcarz, Zhou, Lockey, Abdelsamed, Cross, Kang, Ma, Condori, Dowdy, Triplett, Maron | St. Jude Children’s Research Hospital |
22 Jan 2020 | Mice experiments indicate gene therapy could provide long-lasting protection against different chemical nerve agents | Betapudi, Goswami, Silayeva, Doctor, Chilukuri | US Army Medical Research Institute of Chemical Defense |
4 Mar 2020 | First patient received gene editing therapy with CRISPR directly administered into the body | Pennesi | Oregon Health and Science University |
12 May 2021 | Gene therapy reported to restore immune function in children with rare immunodeficiency | Donald Kohn, Claire Booth | University of California Los Angeles, Great Ormond Street Hospital |
24 May 2021 | Gene therapy reported to restore partial vision to blind person | Sahel, Boulanger-Scemama, Pagot, Arleo, Galluppi, Martel, Degli, Delaux, de Saint Aubert, De Montleau, Gutman, Audo, Duebel, Picaud, Dalkara, Blouin, Taiel, Roska | Sorbonne University, University of Pittsburgh, GenSight Biologics |
25 May 2021 | First NHS patient treated with gene therapy for spinal muscular atrophy | Novartis, Evelina London Children's Hospital | |
28 Jun 2021 | New switch method published enabling precise control of gene editing providing means to refine and tailor gene therapies | Monteys, Hundley, Ranum, Tecedor, Muehlmatt, Lim, Lukashev, Sivasankaran, Davidson | University of Pennsylvania, Children’s Hospital of Philadelphia |
27 Apr 2022 | Gene therapy shown to restore fertility in congenitally infertile mice | Kanatsu-Shinohara, Jiyoung Lee, o Miyazaki, Morimoto, Shinohara | Kyoto University, Tokyo Medical and Dental University |
17 Aug 2022 | FDA approved gene therapy for beta thalassemia treatment | Bluebird | |
22 Nov 1912
Paul Zamecnik was born in Cleveland, Ohio, USA
16 Oct 1943
Roland Levinsky was born in Bloemfontein, South Africa
16 Dec 1961
First successful direct incorporation of functional DNA into a human cell
10 Dec 1966
First evidence published suggesting a virus could provide delivery tool for transferring functional genes
19 Oct 1968
American scientists demonstrate that adding foreign genes to cultured cells from patients with Lesch-Nethan syndrome can correct genetic defects that cause the neurological disease
1970 - 1975
Three West German very young sisters fail to respond to first ever administered gene therapy
3 Mar 1972
First time gene therapy proposed as treatment for genetic disorders
Jun 1976
First human disease gene, beta-globin, cloned
1979
Beta-thalassemia gene successfully inserted into bone marrow of irradiated mice
1980
Gene therapy unsuccessfully tried out in two patients with beta-thalaessemia sparks controversy
22 Apr 1982
First experiment launched to test feasibility of gene targeting in the human genome
May 1983
Creation of first retroviral vector suitable for gene therapy
1984
Experiment published demonstrating possibility of inserting a corrective DNA in the right place in genome of mammalian cells
1984
First cationic (positively charged) lipid synthesised, opening up new possibilities to deliver drugs and gene therapy
22 Jan 1985
NIH published its first draft guidelines for proposing experiments in human somatic cell gene theray
19 Sep 1985
Technique published for the accurate insertion of a corrective DNA in the human genome
1987
mRNA encapsulated into liposome made with cationic lipids injected into mouse cells shown to produce proteins
1987
Vical Corporation founded
May 1989
First human test demonstrated safety of retroviral vector for gene therapy and potential of laboratory produced tumor killing cells for cancer immunotherapy
Dec 1989
First use of genetically engineered T cells to redirect T cells to recognise and attack tumour cells
Dec 1989
Concept of enhancing T cells using chimeric antigen receptors published for first time
Jan 1990
Gene therapy concept proven in first human trials
30 Aug 1990
Treatment with gene modified tumour-infiltrating lymphocytes shown to be promising immunotherapy for patients with advance melanoma
Sep 1990
Four year old Ashanti DeSilva becomes first patient successfully treated with gene therapy for severe combined immunodeficiency caused by defective ADA gene
1992
Stem cells used as vectors to deliver the genes needed to correct the genetic disorder SCID
15 Jan 1993
Chimeric receptor genes added to T lymphocytes shown to enhance power of adoptive cellular therapy against tumours
14 Oct 1993
FDA published its regulations governing gene therapy
17 Sep 1999
Death of the first patient in a gene therapy trial prompted major setback for the field
1999 - 2002
Multi-centre trials with gene therapy using stem cells to treat children with SCID
2000
Two French boys suffering from SCID reported to be cured using gene therapy
2 Jan 2000
Polyoma virus shown to be potential tool for delivering gene therapy
2 Jan 2000
Suspension of French and US gene therapy trials for treating SCID children
2 Jan 2000
First human trial of gene therapy using modified lentivirus as a vector
16 Oct 2003
China approved the world's first commercial gene therapy
3 Apr 2005
Zinc finger method reported capable of modifying some genes in the human genome, laying the foundation for its use as tool to correct genes for monogenic disorders
6 Oct 2006
Genetically engineered lymphocytes shown to be promising cancer treatment
15 Oct 2006
Adoptive cellular therapy using chimeric antigen receptor T cells shown to be safe in small group of patients with ovarian cancer
2007
Small trial published demonstrating possibility of using gene therapy for inherited retinal disease
1 May 2008
Zinc finger method explored as means to develop treatment for glioblastoma (brain tumour)
29 Jun 2008
Zinc finger method used to make HIV-resistant CD4 cells to develop immunotherapy for HIV
2009
Almost blind child with rare inherited eye disease gains normal vision following gene therapy
2009
Gene therapy halts progression of degenerative disease adrenoleukodystrophy in two boys
11 Feb 2009
Stem-cell transplant reported to be promising treatment for curing HIV
27 Dec 2009
Paul Zamecnik died
Jan 2010
Gene therapy for treatment of lipoprotein lipase deficiency fails to win European approval
Jan 2010
Gene therapy successful in treating beta-thalassaemia
2010 - 2013
Studies show CD19-specific CAR-modified T cells to be promising treatment in patients with B cell malignancies
14 Jan 2010
Research published suggesting gene therapy could help preserve neural circuits and protect against vision loss in patients with multiple sclerosis
14 Jan 2010
Gene therapy reduces symptoms in six patients with haemophilia B
10 Mar 2011
Patient suffering from acute myeloid leukaemia is cured of HIV-1 after receiving bone marrow stem cells transplanted from donor with mutated CCR5 gene. This awakens interest in developing HIV treatment that renders a patient's cells resistant to HIV-1
14 Jul 2011
Gene repair kit used successfully to treat blood-clotting disorder haemophilia in mice
Jan 2012
European Union asks European Medicines Agency to reconsider approval of alipogene tiparvovec
Jul 2012
First gene therapy approved for treatment of patients with familial lipoprotein lipase deficiency
1 Jun 2013
Basic studies conducted with TALENs to see if can correct mutant genes associated with Epidermolysis Bullosa, a rare inherited skin disorder
Oct 2013
Fiven children with ADA-SCID successfully treated with gene therapy
Jan 2014
Eyesight reported to improve in six patients suffering from choroideremia after receiving gene therapy
Mar 2014
Promising results announced from trial conducted with HIV patients
6 Mar 2014
Phase I trial using Zinc finger nuclease modified CD4 cells to treat 12 HIV patients shows the approch is safe.
10 Sep 2014
Mice trials show CD4 T-cells genetically modified with Zinc fingers could be effective HIV-1 gene therapy
1 Jan 2015
US FDA cleared Investigative Drug Application for clinical trial of gene therapy for haemophila B. The therapy was the first in vivo genome editing application to enter the clinic
21 Jul 2015
Phase 1 clinical trial launched with RNAi treatment for Huntingdon's disease
Oct 2015
First oncology gene therapy approved in US and Europe
5 Nov 2015
First successful use of gene therapy to treat baby dying from leukaemia
11 Dec 2015
Preliminary results presented for phase 2 trial using Zinc finger nuclease modified CD4 and CD8 cells to treat HIV patients
31 Dec 2015
Gene editiing tool, CRISPR, successfully used to improve muscle function in mouse model of Duchenne muscular dystrophy
21 Jun 2016
2016: NIH gives green light for first clinical trial using gene editing tool CRISPR/Cas 9 to treat patients
6 Feb 2017
Gene therapy shown to restore hearing in deaf mice
2 Mar 2017
Gene therapy reported to successfully reverse sickle cell disease in first patient
Apr 2017
First gene therapy approved in Europe for lipoprotein lipase deficiency (Glybera) withdrawn from market
12 Jul 2017
US FDA Oncologic Drugs Advisory Committee recommended the approval of the first adoptive cell therapy (CAR-T cell therapy) for B cell acute leukaemia
30 Aug 2017
USA FDA approved CAR-T therapy for certain pediatric and young adult patients with a form of acute lymphoblastic leukemia
4 Oct 2017
Gene therapy shown in clinical trials to halt progression of adrenoleukodystrophy, a fatal brain disease inherited by boys
16 Nov 2017
First patient received therapy involving gene editing inside the body
9 Dec 2017
Gene therapy shown to be safe and efficacious treatment for haemophilia A in British trials
19 Dec 2017
US FDA approved gene therapy approved to treat rare genetic retinal disease
5 Jan 2018
Researchers identify pre-existing antibodies targeting CAS9 proteins raising possibility of immune responses undermining utility of CRISPR-Cas9 for gene therapy
19 Apr 2018
Gene therapy shown to be promising treatment in clinical trials for beta thalassemia
27 Aug 2018
First CRISPR-Cas9 clinical trial launched
23 Nov 2018
Gene therapy approved in Europe for treatment of patients with vision loss linked to genetic mutation
5 Mar 2019
Second patient reported free of HIV after receiving stem-cell therapy
19 Apr 2019
Gene therapy shown to be promising in treating infants born with X-linked severe combined immunodeficiency (SCID-X1)
22 Jan 2020
Mice experiments indicate gene therapy could provide long-lasting protection against different chemical nerve agents
4 Mar 2020
First patient received gene editing therapy with CRISPR directly administered into the body
12 May 2021
Gene therapy reported to restore immune function in children with rare immunodeficiency
24 May 2021
Gene therapy reported to restore partial vision to blind person
25 May 2021
First NHS patient treated with gene therapy for spinal muscular atrophy
28 Jun 2021
New switch method published enabling precise control of gene editing providing means to refine and tailor gene therapies
27 Apr 2022
Gene therapy shown to restore fertility in congenitally infertile mice
17 Aug 2022
FDA approved gene therapy for beta thalassemia treatment
Science links: Science home | Cancer immunotherapy | CRISPR-Cas9 | DNA | DNA extraction | DNA polymerase | DNA Sequencing | Epigenetics | Faecal microbiota transplant | Immune checkpoint inhibitors | Infectious diseases | Messenger RNA (mRNA) | Monoclonal antibodies | Nanopore sequencing | Organ-on-a-chip | p53 Gene | PCR | Phage display | Phage therapy | Plasmid | Recombinant DNA | Restriction enzymes | Stem cells | The human microbiome | Transgenic animals |
Respond to or comment on this page on our feeds on Facebook, Instagram, Mastodon or Twitter.